4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section	on A	•	
1(i)	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	B1	
1(ii)	$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	B1	
1(iii)	$ \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 0 & 3 \end{pmatrix} $	M1 A1 [4]	Multiplication, or other valid method (may be implied) c.a.o.
2	Im	В3	Circle, B1; centre $-3+2j$, B1; radius = 2, B1
	2	В3	Line parallel to real axis, B1; through (0, 2), B1; correct half line, B1
	-3 Re	B1 [7]	Points $-1+2j$ and $-5+2j$ indicated c.a.o.
3	$ \begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} $	M1	$\operatorname{For} \begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$
	$\Rightarrow -x - y = x, \ 2x + 2y = y$ $\Rightarrow y = -2x$	M1 B1 [3]	
4	$3x^{3} - x^{2} + 2 \equiv A(x-1)^{3} + (x^{3} + Bx^{2} + Cx + D)$		
	$\equiv Ax^3 - 3Ax^2 + 3Ax - A + x^3 + Bx^2 + Cx + D$ $\equiv (A+1)x^3 + (B-3A)x^2 + (3A+C)x + (D-A)$	M1	Attempt to compare coefficients
	$\Rightarrow A = 2, B = 5, C = -6, D = 4$	B4 [5]	One for each correct value
		[2]	

5(i)	(7 0 0)	В3	Minus 1 each error to minimum of
	$\mathbf{AB} = \begin{bmatrix} 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}$		0
		[3]	
5(ii)	$\mathbf{A}^{-1} = \frac{1}{7} \begin{pmatrix} -1 & 0 & 2 \\ 14 & -14 & 7 \\ -5 & 7 & -4 \end{pmatrix}$	M1	
	$A^{-1} = \frac{1}{7} \begin{bmatrix} 14 & -14 & 7 \\ 5 & 7 & 4 \end{bmatrix}$	A1	Use of B
	(-5 / -4)	[2]	c.a.o.
6	$w = 2x \Rightarrow x = \frac{w}{2}$	B1	Substitution. For substitution $x = 2w$ give B0 but then follow through for a maximum of 3
	$\Rightarrow 2\left(\frac{w}{2}\right)^3 + \left(\frac{w}{2}\right)^2 - 3\left(\frac{w}{2}\right) + 1 = 0$	M1 A1	marks Substitute into cubic Correct substitution
	$\Rightarrow w^3 + w^2 - 6w + 4 = 0$	A2	Minus 1 for each error (including '= 0' missing), to a minimum of 0 Give full credit for integer multiple of equation
		[5]	
6	OR		
	$\alpha + \beta + \gamma = -\frac{1}{2}$	B1	All three
	$\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{2}$ $\alpha\beta\gamma = -\frac{1}{2}$		
	$\alpha p \gamma = -\frac{1}{2}$		
	Let new roots be k, I, m then	M1	Attempt to use sums and
	$k+l+m=2(\alpha+\beta+\gamma)=-1=\frac{-B}{A}$		products of roots of original equation to find sums and products of roots in related
	$kl + km + lm = 4(\alpha\beta + \alpha\gamma + \beta\gamma) = -6 = \frac{C}{A}$	A1	equation Sums and products all correct
	$klm = 8\alpha\beta\gamma = -4 = \frac{-D}{A}$		
	$\Rightarrow \omega^3 + \omega^2 - 6\omega + 4 = 0$	A2	ft their coefficients; minus one for each error (including '= 0' missing), to minimum of 0 Give full credit for integer multiple
		[5]	of equation

7(i)	$\frac{1}{3r-1} - \frac{1}{3r+2} = \frac{3r+2-(3r-1)}{(3r-1)(3r+2)}$	M1	Attempt at correct method
	$\equiv \frac{3}{(3r-1)(3r+2)}$	A1	Correct, without fudging
		[2]	
7(ii)	$\sum_{r=1}^{n} \frac{1}{(3r-1)(3r+2)} = \frac{1}{3} \sum_{r=1}^{n} \left[\frac{1}{3r-1} - \frac{1}{3r+2} \right]$	M1	Attempt to use identity
	$= \frac{1}{3} \left[\left(\frac{1}{2} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{8} \right) + \dots + \left(\frac{1}{3n-1} - \frac{1}{3n+2} \right) \right]$	A1 M1	Terms in full (at least two) Attempt at cancelling
	$= \frac{1}{3} \left[\frac{1}{2} - \frac{1}{3n+2} \right]$	A2	A1 if factor of $\frac{1}{3}$ missing,
		[5]	A1 max if answer not in terms of <i>n</i>
	Section A Total: 36		

Section	on B		
8(i)	x = 3, $x = -2$, $y = 2$	B1 B1 B1 [3]	
8(ii) 8(iii)	Large positive x , $y \rightarrow 2^+$ (e.g. consider $x = 100$) Large negative x , $y \rightarrow 2^-$ (e.g. consider $x = -100$)	M1 B1 B1 [3]	Evidence of method required
	Curve Central and RH branches correct Asymptotes correct and labelled LH branch correct, with clear minimum	B1 B1 B1 [3]	
8(iv)	$-2 < x < 3$ $x \neq 0$	B2 B1 [3]	B2 max if any inclusive inequalities appear B3 for $-2 < x < 0$ and $0 < x < 3$,

9(i)	2 + 2j and $-1 - j$

9(ii)

Im A	××*
-2 ptx -2-	+ ½ > Re

9(iii)

$$(x-2-2j)(x-2+2j)(x+1+j)(x+1-j)$$

$$=(x^2-4x+8)(x^2+2x+2)$$

$$= x^4 + 2x^3 + 2x^2 - 4x^3 - 8x^2 - 8x + 8x^2 + 16x + 16$$

= $x^4 - 2x^3 + 2x^2 + 8x + 16$

$$\Rightarrow A = -2, B = 2, C = 8, D = 16$$

OR

$$\sum \alpha = 2$$

$$\alpha\beta\gamma\delta = 16$$

$$\sum \alpha\beta = \alpha\alpha^* + \alpha\beta + \alpha\beta^* + \beta\beta^* + \beta\alpha^* + \beta^*\alpha^*$$

$$\sum \alpha\beta\gamma = \alpha\alpha^*\beta + \alpha\alpha^*\beta^* + \alpha\beta\beta^* + \alpha^*\beta\beta^*$$

$$\sum \alpha \beta = 2$$
, $\sum \alpha \beta \gamma = -8$

$$A = -2$$
, $B = 2$, $C = 8$, $D = 16$

OR

Attempt to substitute in one root Attempt to substitute in a second root

Equating real and imaginary parts to 0 Attempt to solve simultaneous equations

$$A = -2$$
, $B = 2$, $C = 8$, $D = 16$

B2 **[2]** 1 mark for each

B2 **[2]**

1 mark for each correct pair

M1 B2

A1

Attempt to use factor theorem Correct factors, minus 1 each error

B1 if only errors are sign errors One correct quadratic with real coefficients (may be implied)

M1 Expanding

A2 **[7]**

Minus 1 each error, A1 if only errors are sign errors

B1 B1

M1

M1 A1

A2

[7]

Minus 1 each error, A1 if only errors are sign errors

M1 M1 A1

> M1 M1 A2

> > [7]

Both correct

Both correct

Minus 1 each error, A1 if only errors are sign errors

4755

Mark Scheme June 2008

Qu	Answer	Mark	Comment
Section	B (continued)		
10(i)	$\sum_{r=1}^{n} r^{2} (r+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r^{2}$	M1	Separation of sums (may be implied)
	$= \frac{1}{4}n^{2}(n+1)^{2} + \frac{1}{6}n(n+1)(2n+1)$ $= \frac{1}{12}n(n+1) \lceil 3n(n+1) + 2(2n+1) \rceil$	B1 M1	One mark for both parts Attempt to factorise (at least two linear algebraic factors)
	$= \frac{1}{12} n(n+1) (3n^2 + 7n + 2)$	A1	Correct
	$= \frac{1}{12} n (n+1) (n+2) (3n+1)$	E1	Complete, convincing argument
		[5]	
10(ii)	$\sum_{r=1}^{n} r^{2} (r+1) = \frac{1}{12} n (n+1) (n+2) (3n+1)$		
	n = 1, LHS = RHS = 2	B1	2 must be seen
	Assume true for $n = k$	E1	Assuming true for k
	$\sum_{r=1}^{k} r^{2} (r+1) = \frac{1}{12} k (k+1) (k+2) (3k+1)$		
	$\sum_{r=1}^{k+1} r^2 (r+1)$ $= \frac{1}{12} k (k+1) (k+2) (3k+1) + (k+1)^2 (k+2)$ $= \frac{1}{12} (k+1) (k+2) [k (3k+1) + 12 (k+1)]$	B1 M1 A1	(k + 1)th term Attempt to factorise Correct
	$= \frac{1}{12}(k+1)(k+2)(3k^2+13k+12)$ $= \frac{1}{12}(k+1)(k+2)(k+3)(3k+4)$	A1	Complete convincing argument
	$= \frac{1}{12}(k+1)((k+1)+1)((k+1)+2)(3(k+1)+1)$	E1	Dependent on previous A1 and
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$	E1	previous E1 Dependent on first B1 and
	 Since it is true for k = 1, it is true for k = 1, 3 and so true for all positive integers. 	[8]	previous E1
			Section B Total: 36
			Total: 72